
JOURNAL 
OF THE AMERICAN CHEMICAL SOCIETY 

Registered in U.S. Patent Office. © Copyright, 1977, by the American Chemical Society 

VOLUME 99, N U M B E R 23 NOVEMBER 9, 1977 

Monte Carlo Calculations in the 
Isothermal-Isobaric Ensemble. 1. Liquid Water1 

John C. Owicki2a and Harold A. Scheraga*2b 

Contribution from the Department of Chemistry, Cornell University, 
Ithaca, New York 14853. Received February 10, 1977 

Abstract: A Monte Carlo simulation of liquid water is carried out in the isothermal-isobaric ensemble at 298 K and atmo­
spheric pressure. Simple cubic and face-centered cubic periodic boundary conditions are used with 64 and 100 water mole­
cules, respectively. A number of thermodynamic properties are calculated, including the mean molar volume. Since quantum 
effects on the thermodynamic properties of water are nontrivial, and since the Monte Carlo procedure is based on classical sta­
tistical mechanics, quantum corrections to the computed internal energy and heat capacity are calculated. Use is made of ener­
gy probability distribution functions as aids in understanding the hydrogen-bonding interactions in the liquid. It is found that 
there is a broad, smooth distribution of hydrogen-bond energy in this model for liquid water, rather than relatively discrete sets 
of bonded and unbonded interaction energies. Theuse of Monte Carlo techniques to calculate free energies is discussed briefly, 
and the inadequacy of one published method is demonstrated. 

I. Introduction 
The chemical and physical properties of liquid water have 

a profound influence on processes in disciplines as diverse as 
geophysics and biochemistry. Water also is important in sta­
tistical mechanics as one of the simplest fluids whose structure 
is determined largely by strong, noncentral attractive forces 
(hydrogen bonds) rather than primarily by short-range overlap 
repulsions. It is hardly surprising, then, that a great deal of 
research effort has been devoted to the subject; a bibliography3 

on water, covering 1969-1974, cited about 2000 publications 
by 2800 authors. Of the advances during this period, some of 
the most fundamental have resulted from the use of Monte 
Carlo (MC)4"8 and molecular dynamics (MD)9"13 computer 
calculations. 

All previous MC and MD studies of water and aqueous so­
lutions have been carried out at fixed volume. It often would 
be advantageous to carry out theoretical calculations at con­
stant pressure, particularly to study volume effects and to 
model processes taking place at constant pressure. 

We, therefore, have performed a series of MC calculations 
in the isothermal-isobaric ensemble, i.e., with fixed temper­
ature, pressure, and number of molecules. This paper reports 
the findings obtained for pure water, and its companion paper14 

presents the results for dilute aqueous solutions of methane. 
In the present paper, section II is a resume of some of the 

most relevant results of statistical mechanics. Section III in­
cludes a sketch of the important approaches to the theory of 
liquids, as well as a comparison of MC and MD. Section IV 
describes the MC technique in more detail, and section V 
discusses the intermolecular pair potential energy function used 
in these calculations. Technical computational details are 
covered in section VI. Section VII is a presentation of the re­
sults of the calculations, with discussion and comparison with 

experiment. Section VIII is devoted to a discussion of a pre­
viously proposed method for the MC calculation of free ener­
gies. Finally, the findings are summarized and conclusions are 
drawn in section IX. 

II. Statistical Mechanics 
A. Introduction. This section is the classical statistical-

mechanical groundwork for the rest of the paper. For further 
information, the reader should consult Ben-Nairn's book15 or 
a standard text on the theory of liquids16 or on statistical me­
chanics.17 

We consider a system of N water molecules at absolute 
temperature T (with 0 = \/kT), volume V, and pressure P 
(not all of which are independent variables). Summations and 
products are taken over molecular indices, from 1 to N, unless 
otherwise indicated. Integrations over molecular coordinates 
are evaluated over all parts of configuration space with the 
molecules confined to the volume V. 

B. Description of Molecules. In this paper, water molecules 
are treated as rigid bodies; in other words, there are no intra­
molecular degrees of freedom. The six external degrees of 
freedom are taken to be the Cartesian coordinates (x, y, z) of 
the oxygen nucleus (arbitrarily treated as the "center" of the 
molecule) and three Euler angles15 (</>, 6, \p) specifying the 
rotational position about the center. 4> and 8 are the spherical 
azimuthal and polar angles specifying the orientation of the 
molecular C2 axis, and \p specifies the rotational degree of 
freedom about that axis. The vector of coordinates of molecule 
/ is X/ = {x,, yit Zi, 4>i, Bj, 4>i), and the collective coordinates 
of the N molecules are denoted by X^= {x\,y\,z\,(j)\,d\,^\, 
Xi, • • •• ^N)- Also, dX^ = dxid^idzid^id^idt/'idx2. . A\pN. 

The configurations of molecules can be represented in many 
coordinate systems, and integrals over configurations must be 
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corrected for any alteration of configuration space if the 
coordinate system is changed from a Cartesian to some other 
one. This is accomplished by including the appropriate Jaco-
bian function / in the integrand.15-18 In the present coordinate 
system, 

/(X") = I ! sin Bi (D 

The differential volume element in configuration space at the 
point X" is /(X")dX". 

C. Intermolecular Potential Energy. The interaction po­
tential among the N molecules is Ov(X"). We make the usual 
approximation that UN is the sum of pair potential terms U: 

UN=Z U(X1, Xj) (2) 

The exact functional form chosen for U will be presented in 
section V. 

D. Partition Functions and Ensembles. In the canonical 
ensemble (fixed T, V, N), the partition function is 

Q(T, V, N) = -Z(T, V, N) (3) 
(87r2)"A3"/V! 

where q is the classical rigid-body rotational momentum 
partition function and A is the thermal de Broglie wavelength. 
Z is the configuration integral, defined as 

Z(T, V, N)= C • • • C exp[-f3UN(XN)]J(XN)dXr 
(4) 

The Helmholtz free energy A is given by 

A(T, V, N) = -kT In [Q(T, V, N)] (5) 

and the probability density for observing the system in some 
configuration X" is 7r(X"), where 

*(X") = exp[-/3l/jv(X")]/(X")/Z(r, V, N) (6) 

Calculations can be carried out at fixed pressure rather than 
at fixed volume. The statistical mechanical ensemble corre­
sponding to these conditions is the isothermal-isobaric or (T, 
P, N) ensemble. Its partition function and the canonical par­
tition function are related as transforms of the conjugate 
variables P and V: 

A( T, P, N)= c C" Q(T, V, N) exp(-(3PV)dV 

eg' 
{^)N^N-^,P,N) (1) 

where c is a factor with dimensions of inverse volume intro­
duced because of the transformation,19'20 and 

Z(T, • p - " > - r Z(T, V, N) exp(-(3PV)dV (8) 

The Gibbs free energy G is given by 

G(T, P, N) = -kT In [A(T, P, N)] (9) 

The (T, P, N) configurational probability density is defined 
to include the volume as a variable: 

TT(X", V) = exp[-|8t/jv(X") - HPV] J(XN)/Z(T, P, N) 
(10) 

It can be seen from eq 10 that the factor multiplying Z(T, P, 
N) in eq 7 does not appear in the expression for Tr(X", V). For 
the rest of this section, we shall use the (T, P, N) ensemble; 
most expressions derived below have analogues in the (T, V, 
N) ensemble. 

E. Ensemble Averages. For a general function F(X", V) we 

define (F) to be the ensemble average of F: 

(F) = [ J V f ^(X", K)x(X", K)dX"dK 

(H) 

For example, (UN) is the mean (i.e., thermodynamic) poten­
tial energy of the system and {V) is its mean volume. The in­
ternal energy E is the sum of the kinetic energy FK and CJv; 
the enthalpy H is the sum of the internal energy and PV. 
Hence, 

(12) 
(F) = (FK) + (CA-) 

(H) = (E)+P(V) 
Fluctuations in enthalpy and volume lead to three important 
thermodynamic functions: 

a. Heat capacity 

Cp = (d(H)/bT)P,N/N = ((H2) - (H)2)/NkT2 (13) 

b. Isothermal compressibility 

K = - (d<K>/d /W<K> = ((V2) - (V)2)/kT(V) 

(14) 

c. Coefficient of thermal expansion 

a = (d(V)/dT)P,N/(V) = ((VH) - (V)(H))/kT2(V) 
(15) 

For computational purposes, it is convenient to rewrite the 
differences in a and c by expressing H in terms of its three 
component terms of eq 12. The resulting equations simplify 
somewhat because of the lack of correlation between FK and 
UN or V. There are no terms involving FK in the expression for 
a, and Cn can be broken up into kinetic and potential contri­
butions, as indicated below: 

Cp = Cp, K + Cp1POT 
= ( ( F K 2 ) - (EK)2)/NkT2 + [((Cv + PV)2) 

- (UN+ PV)1VNkT2 (16) 

F. Probability Distribution Functions. It is possible to define 
a probability distribution function (PDF) for any function 
F(X", V): 

PF(v)^(b[F(XN,V)-v]) (17) 

The Dirac 5 function ensemble average is the probability 
density that a configuration will occur for which F has the 
value v. It follows easily that 

x: PF(v)dv = 1 

and 

(F) -s: vPf(v)dv 

(18) 

(19) 

A useful PDF is that for B, the molecular binding energy.15 

For the /th molecule, 

#,(X") = L C(X,-, X;) (20) 
J*I 

Since the molecules are indistinguishable, the PDF can be 
based either on a specific molecule or on an average over all 
molecules; i.e., 

PB(V)^-XPB1(V) 
N 

(21) 

which can be taken to be the same as PB1 (V). Thus, PB de­
scribes the distribution of interaction energies of individual 
molecules with their surroundings. 
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It is possible15'21 to extend the above definition of PDF's to 
form multidimensional and conditional PDF's. We will not go 
into detail on this subject except to introduce verbally a con­
ditional PDF which we will use later. In a simple liquid, mol­
ecules are termed nearest neighbors when their centers ap­
proach closer than 7?NN> the position of the first minimum in 
the radial distribution function. Thus, pairs corresponding to 
the first peak in the radial distribution function are nearest 
neighbors. We define PUNNM to be the PDF for pair potential 
energies involving only nearest-neighbor molecules. In water, 
/5UNN is a probe of the distribution of pair interaction energies 
between molecules which are close enough together to form 
hydrogen bonds or otherwise to interact strongly. 

A familiar function in the theory of liquids, which is related 
closely to PDF's, is the atom-atom radial distribution function 
gap(R). In a molecular fluid with atoms of type a and /3 at 
number densities pa and p^, the probability density that an a 
and /3 are at a given pair of points a distance R apart is 
PaPflgap(R)-16 

The mean number of atom centers of type 0 within a dis­
tance R of one of type a is given by 

Na0(R) = Pu J0* 4irR2ga0(R)dR (22) 

As an important special case, A'OO(-RNN) is the coordination 
number of water. 

III. Basic Techniques in the Theory of Liquids 
A. Alternative Approaches. For all except the most trivial 

cases (e.g., ideal gas), the partition function of a dense fluid 
is extremely difficult to evaluate. This has led to three funda­
mentally different ways of approaching the problem of the 
statistical mechanics of liquids. In the first, a simplified par­
tition function is constructed to represent what is believed to 
be the salient features of the system. There are many examples 
of this type for water, such as the cluster theory of Nemethy 
and Scheraga.22 These theories have led to useful insights, but 
they are only as realistic as the drastically simplifying as­
sumptions on which they are based. 

Second, one can take the path of the classical theory of liq­
uids.16 This assumes a knowledge of the pair potential, and 
usually proceeds with the development of numerically solvable 
approximate integral equations for observable quantities. 
Water has been beyond the reach of such techniques, but some 
recent developments show promise.23'24 

The third approach, that of MD or MC, also presumes a 
knowledge of the potential energy function. Numerical tech­
niques are applied to obtain information while sidestepping the 
evaluation of the partition function. The resulting calculations 
consume great amounts of computer time, typically hours on 
large, modern machines. The strength of the MD and MC 
techniques is that, subject to limitations discussed below, they 
produce essentially exact results for the potential used. 

B. Comparison of MD and MC. MD is a computer simula­
tion in which molecules are assigned initial coordinates and 
momenta which are allowed to evolve in time by numerical 
integration of the differential equations of motion. Time av­
erage mechanical properties (both equilibrium and transport) 
can be obtained if the simulated time is long with respect to the 
periods of large fluctuations in these quantities. Since the en­
ergy, volume, and number of particles (E, V, N) are fixed, MD 
operates in the microcanonical ensemble. 

As it usually is applied to calculations on liquids, MC also 
can be viewed as a simulation. More precisely, though, it is a 
stochastic numerical integration technique for obtaining en­
semble averages. MC has not been used to compute transport 
properties of liquids, because they are not easy to formulate 
as time-independent ensemble averages. In this respect, it is 
not as powerful as MD. However, the much greater flexibility 

of MC calculations allows the use of various ensembles and 
various averaging procedures in the computation of quantities 
which would be practically impossible to compute with 
MD.25,26 This flexibility dictated our choice of the MC 
method. 

IV. The Monte Carlo Method 
A. Introduction. The title of this section is misleading in that 

there actually are many Monte Carlo methods,27 which are 
applied to a whole range of problems from game theory to 
nuclear physics and statistical mechanics. Much of the appli­
cability of MC stems from the fact that, as the complexity and 
number of degrees of freedom in a problem become large, 
stochastic techniques often become the most efficient means 
of solution. MC calculations on liquids derive from the tech­
nique introduced by Metropolis et al.28 in 1953, and all further 
discussion of MC here will refer to that algorithm. 

B. The Metropolis Method in the (T, V, N) Ensemble. This 
algorithm is a technique for generating a series or chain 
(technically, a Markov chain) of configurations {X,^}, m = 
1, 2, . . . , M, such that, as M ~* <*>, \Xm

N\ is distributed ac­
cording to the canonical probability distribution function ir. 
It follows that, for any F(X'V), 

In practice, M is finite but large_enough so that the MC av­
erage (which we shall denote by F) converges sufficiently close 
to (F). We now turn to the algorithm itself. For further in­
formation and proofs, the reader should consult ref 19, 27, and 
29. 

Assume that there are a finite number of discrete values of 
X^, termed states of the system.30 It will be convenient to 
denote the states \SS], s = 1,2, . . . . Further assume that we 
already have generated m configurations of the chain, which 
currently is in state / (i.e., \m

N = S1). To find the next con­
figuration in the chain, first randomly generate some trial 
configuration (seebelow), say Sj. If TTJ > 7r,-, set \m+\N ~ Sj 
[where T, = a-(S,-)]. If TTJ < v,-, set \m+\N = S7- with proba­
bility 7r/7r,-, and let Xm+\N = S/ with probability (1 - 7r//ir,-). 
The choice when itj < -K1 is made by generating a random 
number r uniformly on the interval (0,1). If r < TTJ/TTJ, \m+\N 

= Sj-, otherwise, XW+]
A' = S,-. 

Since the configuration integral Z is unknown, so are all the 
values of w (see eq 10). However, Z cancels when the ratio 
7T//7T,' is formed: 

Tjfri = expf-flLMS,-) - UN(S1)J][J(SJVJ(S1)] (24) 

This simplifies further when J is a constant, as for the Carte­
sian coordinates of point particles. 

Trial configurations may be generated in many ways.31'32 

Usually, something like the following prescription is used: (1) 
pick a molecule at random; (2) for each coordinate of that 
molecule, pick a small random displacement uniformly on some 
interval (—5, 5), where <5 is a constant which may be different 
for each coordinate. The addition of this perturbation to the 
current configuration generates the trial configuration. The 
values of the maximum step sizes 5 are adjusted to achieve 
~50% acceptance of the trial steps, so as to promote rapid 
convergence of the chain. 

The ultimate convergence of the MC average is independent 
of the starting configuration, which generally is some highly 
improbable state. Finite averages, though, give undue weight 
to these configurations. One, therefore, discards the first part 
of the chain, beginning the averaging only after the functions 
to be averaged have settled down to fluctuations about the 
mean. 

C. Periodic Boundary Conditions. Computational economy 
dictates that one use the smallest number of molecules which 

Owicki, Scheraga / Monte Carlo Calculations on Liquid Water 



7406 

adequately reproduces the properties of the liquid being 
studied. Surface effects render this number unfeasibly large 
if the system is a cluster of N molecules confined to the volume 
V. However, if the cluster (the base cell) is surrounded by 
replicas of itself on some periodic lattice, surface effects are 
reduced dramatically, and representative calculations are 
possible with N ~ 101 to 103, depending on the liquid being 
studied. These are the periodic boundary conditions (PBC) 
introduced by Metropolis et al.28 

The usual lattice is simple cubic, so that the cells are also 
cubic. When the center of a perturbed molecule leaves the cell, 
the molecule is translated on the lattice so that it reenters the 
cell from the opposite face. The only pair potential interactions 
which are calculated are those for which at least one of the 
molecules is in the base cell. 

The effects of the artificial correlations imposed by the PBC 
can be reduced if interactions beyond some cutoff distance R0 
are not calculated. This also decreases the computation time. 
A correction may be made for these neglected interactions (see 
section VI). The "minimum-image" convention is often used, 
in which Rc is chosen so that a molecule i interacts with at most 
one image (the closest) of molecule) on the lattice19 (or with 
molecule; itself if it is closer to/ than any of its images are). 
By this criterion, Rc is one-half the distance separating any 
molecule from its closest image, and is a property of the lat­
tice. 

For the simple cubic lattice with cell side length L = F'/3, 
this gives Rc = LjI. Of all lattices, a closest packing lattice 
such as face-centered cubic (FCC) produces the largest image 
separation, with a minimum-image convention value of R0 = 
j/i/3/25/6. The cells are rhombic dodecahedra, four of which 
occur in the overall cubic cell with lattice parameter L = 
(4F)1/3. Under conditions where PBC correlations are a 
problem, it might be wise to use this lattice. 

D. The Metropolis Method in the (T, P, N) Ensemble. This 
differs from the (T, V, N) ensemble method by the inclusion 
of the cell volume as a variable, to be perturbed randomly in 
the same way as the molecular coordinates. The definition of 
a state is expanded to include V, as well as the configuration. 
As described by Wood,19 it is efficient to scale the Cartesian 
coordinates of the molecular centers by L and to work with 
fractional cell coordinates. This adds a factor of L3N to the 
Jacobian. In the (T, P, N) ensemble, ir//ir,- also gains a PV 
term: 

vj/vi = exp\-(5[UN(SJ) - UN(S1)] 

-0P(VJ - Vi)][J(Sj)ZJ(Si)] (25) 

A volume change is not made in every step but only after 
some set number of steps involving the perturbation of only the 
molecular coordinates. The frequency of V steps is determined 
empirically: if it is too high, the computation time will be 
wasted;33 if it is too low, the convergence of properties related 
to V will be poor. 

A disadvantage of the (T, P, N) technique is that it requires 
more computer time to achieve a given level of precision than 
does the standard (T, V, N) method. This is due primarily to 
the added computational expense of perturbing the volume in 
the (T, P, N) ensemble.33 

E. Error Analysis. Statistical tests34 can be performed to 
estimate the standard errors of the computed MC averages. 
This involves a calculation of the ensemble averages over 
segments of the chain of configurations, and then an analysis 
of the fluctuations of these subaverages. Because of the high 
correlations between successive steps in the chain, there is a 
tendency to underestimate the error, and care must be exer­
cised to ensure the validity of the error analysis. 

V. Water-Water Pair Potential 
A. Introduction. Over the past 10 years, several fairly real-
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Figure 1. Numbering of points for CI potenital. The M point lies on the 
molecular C2 axis. 

Table I. Parameters for CI Water Pair Potential" 

q2= 170.8842 kcalA/mol 
a, = 1.088931 X 106kcal/mol 
a2 = 6.667210 X 102kcal/mol 
a} = 1.455685 X 103kcal/mol 
a4 = 2.736156 X 102kcal/mol 
A, = 5.152759 A-1 

b2 = 2.760870 A"1 

A3 = 2.961927 A"1 

/>4 = 2.233281 A-' 
R0M = 0.2676451 A 
Ron = 0.9572 A 
ZH-O-H = 104.52° 

" Parameters were taken from ref 37. Ron and ZH-O-H are the 
experimental geometry, as determined by Benedict et al.38 

istic analytical empirical pair potentials have been developed 
for water.35-36 Since the EPEN potential was not fully devel­
oped36 at the time that this work was carried out, we used the 
CI potential of Matsuoka et al.,37 which is the most successful 
to date in reproducing the structure and thermodynamics of 
liquid water.8 

B. The CI Potential. Masuoka et al.37 performed ab initio 
plus configuration-interaction (CI) calculations on a set of 66 
water dimer configurations to obtain intermolecular potential 
energies. An analytical functional form was chosen, and its 
parameters were adjusted to obtain the best least-squares fit 
to the quantum-mechanical energies. The resulting CI po­
tential is presented in eq 26 with points numbered as in Figure 
1 and with the parameters37-38 in Table I. The important fea­
tures are the Coulombic interactions among hydrogen nuclei 
and "M" points, as well as exponential attractions and repul­
sions involving oxygen and hydrogen nuclei. 

U=q2(l/Ru + 1/Rn + IfR2I + l//?24 + 4/i?78 - 2//? 18 

- 2//?28 - 2/#37 - 2//J47) + ax exp(-£,tf 56) 
+ a2[exp(-b2Ru) + exp(-b2Ri4) + Qxp(-b2R2i) 

+ exp(-b2R24)] 

+ a3 [exp(-b3R\6) + exp(-i3i?2e) + exp(~b3Ri5) 
+ cxp(-b3R45)] 

- a4[exp(-64/?i6) + exp(-£4i?26) + exp(-i4^35) 
+ exp(-b4R4s)] (26) 

where the subscripts on the i?'s indicate the pairs of atoms 
involved. This is a true pair potential, not an effective one; i.e., 
it does not have three- and higher body energy terms included 
in an average way. 

C. Long Range Potential. When two water molecules are 
close (i.e., with the oxygen-oxygen distance Roo ~ 3 A), the 
potential energy surface is a complicated function of the con­
figuration. Thus, an empirical potential energy function must 
also be complex to fit it well. Indeed, the CI potential has ten 
adjustable parameters and 22 additive terms. However, for 
larger separations, the molecules do not interact as strongly, 
and the potential energy surface simplifies. Since most com­
puter time in MC and MD calculations is spent evaluating 
energies, and since most molecules are not adjacent, it is eco­
nomically sensible to use a simplified long-range (LR) po­
tential at large distances. 

A good LR potential should satisfy three criteria. First, it 
should be computationally simpler than the fill potential. 
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j , p No. of steps X 10 - 5 

Chain K atm N PBC Discarded Averaged 

I 298 1 64 Simple cubic 7.5 9.6 
II 298 1 100 FCC 9.5 4.8 

N f \N stem/ Maximum coordinate step sizes 
Chain no. of V steps x/L, y/L, z/L <j>, i/s deg Cos 8 V, A3 

I 200 0.012 5 0.073 64 
II 300 0.006 6 0.088 70 

Second, it should be accurate. Third, discontinuities at the 
junction between the full and LR potentials should be small 
enough not to affect the properties of the system significantly. 
These are somewhat conflicting requirements. 

After testing a variety of forms, we selected a three-pa­
rameter function with Lennard-Jones interaction between 
" M " points and Coulombic interactions among " M " points 
and hydrogen nuclei (as in the full CI potential): 

t/LR = <?LR2(l//?13+ 1/R14+ 1/R23 

+ \/R24 + 4/R7i-2/Rls 

- 2/R1% - 2/R31 - 2/R47) - c/R7S
6 + d/Rn

]2 (27) 

On an IBM 370/168 computer, this executes about three times 
as fast as the CI potential. 

Parametrization was carried out by a least-squares fit to the 
energies of two sets of configurations, selected as follows. As­
sume that the LR potential is to be used whenever R0o > R3, 
where Rj is the junction 0 - 0 distance. The first set of con­
figurations was all the ab initio points used in the parametri­
zation of the CI potential for which RQO > R]- The second set 
was a grid of configurations with Roo = R], the energy being 
evaluated with eq 26. Rj = 4.5 A seemed the best compromise 
between economy and accuracy; parametrization was carried 
out with 18 ab initio and 72 grid data points, with the two sets 
weighted equally in the least-squares algorithm. The resultant 
parameters were ? L R 2 = 173.561 kcal A/mol , c = 97.4680 kcal 
A 6 /mo l , and d = 5.49168 X 105 kcal A 1 2 /mo l . The fits were 
good. The root mean square deviation from the ab initio points 
was 0.059 kcal /mol, slightly better than the fit of the CI po­
tential for the same points. For a set of 10 000 randomly se­
lected dimer configurations with R00 = Rj, the mean LR 
energy was 0.001 kcal/mol lower than the mean energy with 
the CI potential; the root mean square difference was 0.050 
kcal/mol. 

For still larger separations, Roo £ 6-7 A, it should be 
possible to parametrize a good dipole-dipole interaction po­
tential, which would be still simpler. In this study, however, 
we did not calculate energies in that range (see section 
VI) . 3 9 

VI. Computational Details 
A. General. The computer program written for these cal­

culations was checked26 by successfully reproducing the results 
of M C calculations carried out on a Lennard-Jones fluid by 
McDonald and Singer.4 0 For the computations on water, two 
chains were generated, both in the (T, P, N) ensemble. The 
major differences between the two were that 64 molecules and 
simple cubic PBC were used for chain I, while chain 11 had N 
= 100 with FCC PBC. The most important parameters are 
summarized in Table II. The initial configurations were con­
structed by assigning random positions and orientations to the 
molecules in the base cell, subject to the condition that mo­
lecular centers be separated by at least 2.6 A. 

B. Perturbation of 8. It should be recalled from sections HB 

and IVD that the use of 8 as a molecular coordinate requires 
the computation of ratios of Jacobians such as sin (8 + <50)/sin 
8 in determining step acceptance probabilities. If cos 8 is sub­
stituted for 8 as the coordinate to be perturbed, however, the 
dependence of the Jacobian on 8 vanishes.41 Thus, the Jaco­
bians cancel in eq 24. This simplification (which we used in all 
computations) follows from the fact that sin 8 d# = - d ( c o s 
6). 

C. Interaction Cutoff Distance Rc. Interactions were not 
calculated between molecules whose centers were farther apart 
than Rc = 6.35 A. This cutoff distance was chosen, on the basis 
of preliminary M C calculations, to be slightly smaller than the 
smallest minimum-image value of R0 which would be en­
countered during the volume fluctuations in chain 1. 11 would 
have been possible to increase Rc for chain II, but, to save 
computer time, we did not. This should not vitiate the increased 
accuracy of the larger ensemble; we have corrected for the 
neglected interactions (see below), and the principal advantage 
of a larger value of TV remains in the smaller artificial corre­
lations imposed on the molecules by the PBC. 

D. Corrections for Neglected Interactions. For Roo > ^ o 
dispersion and dipole-dipole interactions are the largest terms 
in the pair potential. If the dispersion interaction is of the form 
-C/Roo6, and if there are no 0 - 0 correlations beyond R0, 
then it is easy to show42 that the statistical dispersion correction 
to UN is 

Udisp=-2irCN2/(3VRci) ( 2 8 ) 

The Kirkwood-Miiller formula43 can be used to estimate C 
= 1366 kcal A 6 /mol . U<nSp was added to UN for each config­
uration, and it averaged ~—0.3N kcal/mol for both chains. 

The dipole-dipole correlations beyond Rc are difficult to 
treat adequately, but they are a small effect. We chose to in­
clude this correction as a perturbation on UN at the end of the 
calculation, using the Onsager reaction field.5 After every 
IO 000 steps in the chain, the configuration was stored for later 
analysis. The net dipole moment M in a sphere of radius Rc 
surrounding each molecule in each stored configuration was 
computed, and the dot product was taken with jit, the dipole 
mojnent of the central molecule. The dipole-dipole correction 
to UN then was calculated as 

U^=-N(i-l)n-M/[(2t+\)Rci] (29) 

t is the experimental4 4 dielectric constant, 78.5; fi was taken 
to be 2.19 D,_as given by the CI potential charge distribution. 
Technically, U^ is a free energy, but it is numerically almost 
identical with the internal energy of the reaction field. The 
values obtained for U^ were +0.1 SN kcal/mol for chain I and 
+0 .12N kcal/mol for chain II. These are of the same sign and 
magnitude as the results of the study by Watts under similar 
conditions.5 

VII. Results and Discussion 

A. Introduction. The principal thermodynamic quantities 
(and error estimates) computed in this study are collected in 
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Table III. Principal Thermodynamic Properties" 

Property 

WN)/N 
(E)/N 
Cp,poj 
CP 
(V)/N 
K 

a 

Units 

kcal/mol 
kcal/mol 
cal/mol deg 
cal/mol deg 
cm3/mol 
10-6/atm 
10-5/deg 

Exptl 
value 

-8.14rf 

18.0« 
18.07« 
41« 
27> 

Chain I* 

-9.38 ±0.07 
-7 .4±0.3 C 

11 ± 2 
14.6 ±2* 
23.78 ± 0.07 
38 ± 5 
66 ± 10 

MC calcd value 

Chain II* 

-9.07 ±0.13 
-7.1 ±0.1e 

17 ± 7 
20.6 ± 7 * 
23.81 ±0.16 
47 ± 16 
39 ± 13 

(T, V,N)C 

-8.51 
-6.5(±0.3?)e 

9.9/ 
13.5 (±2?)/'* 

(18.07)'' 
53 

" All quantities refer to T = 298 K, P = 1 atm. The experimental values, (E) and (V), correspond to E and Kof the Monte Carlo calculation. 
* (T, P, N) ensemble; for chain 1,N = 64; for chain II, N = 100. c Reference 8; N = 343; no error estimates were given. d Reference 45. 
' Calculated using estimates of the kinetic energy and quantum corrections discussed in Appendix. Indicated errors arise chiefly from uncertainties 
in these factors. /This is the constant-volume heat capacity, which experimentally is 0.2 cal/mol deg less than the isobaric quantity (C0 = 
Cp — TVa1JK). « Reference 46. * Calculated using estimate of vibrational heat capacity as discussed in Appendix.' Volume fixed at experimental 
value. J Reference 47. 

Figure 2. PUN, probability distribution function for Un, as obtained for 
chain II. Spike at right is product PUN exp(/3£/,v), as discussed in section 
VIII. The ordinates for the two plots are different. 

Table III. The results for chain II are generally more accurate 
than those for chain I, because of the larger value of/V in chain 
II. The results for chain II are less precise (reproducible) than 
those for chain I, however, since they have a slightly higher 
statistical uncertainty than do those of chain I. Experimental 
values45^47 are included in Table III for comparison, as are the 
MC results obtained by Lie, Clementi, and Yoshimine 
(henceforth LCY).8 The LCY study was performed in the (T, 
V, N) ensemble with the same CI potential used here and at 
the same temperature; V was fixed at the experimental low-
pressure value (for P = 1 atm), and 343 molecules were 
used. 

The various distribution functions calculated in this study 
(Figures 2-7) have not been smoothed for presentation. This 
makes it easy to see the amount of statistical scatter in the data. 
Statistical uncertainties (see section IVE) are reported as "± 1 
standard deviation." 

B. Energy and Heat Capacity. The calculated (T, P, N) in­
ternal energies are somewhat too high. As LCY noted, the 
inclusion of three-body energetic effects would improve the 
agreement substantially. The effect of increasing N is to in­

crease UN/N. This also was observed in the two (T, V, N) MC 
studies in which N was varied.5'7 Together with the radial 
distribution function data discussed below, these facts suggest 
the generalization that the principal error introduced by using 
too few water molecules is to structure the liquid too highly. 

The value of UN/N of chain II is about 0.6 (±0.2) kcal/mol 
below the LCY value obtained for the same experimental 
conditions. This difference can be traced to three factors. (1) 
Compared to LCY, we used a fairly small value of Re; we 
treated nonelectrostatic interactions beyond this cutoff distance 
as dispersions, which were both stronger and longer ranged 
than the corresponding weak exponential terms in the CI po­
tential. This contributes up to 0.3 kcal/mol to the energy dif­
ference. (2) The mean density in our calculations is lower than 
the experimental value, which tends to lower UN-O) The de­
pendence of UN on /V indicates that, if we had used N > 100, 
UN would have increased slightly. 

The calculated heat capacities are in fair agreement with 
those from experiment and LCY, when allowance is made for 
the large uncertainties in the calculated values. The relative 
standard errors in fluctuation quantities are expected to be 
larger than those in the parent averages. 

The PDP for UN, as computed in chain II, is presented in 
Figure 2. PUN is a fundamental function; its mean is UN, and 
its variance [i.e., UN

2 - (UN)2] is directly related to the heat 
capacity. There are no known experimental techniques for 
obtaining PUN. 

C. Volume, Compressibility, Expansibility. The most sig­
nificant disagreement between our calculations and experiment 
is the error in the average volume, corresponding to a 24% 
underestimate of the density. The observed dependence of V/N 
on TV is negligible. In the LCY study, the analogue of the vol­
ume error was the poor value of the computed pressure. 

Extensive calculations of the P-V-T behavior of water can 
be a sensitive test of a potential energy function. This sensitivity 
is exhibited in the fact that preliminary (T, P, N) MC calcu­
lations48 show a significant improvement in the average volume 
using a pair potential with the improved EPEN functional 
form36 but parametrized to the same ab initio data set used for 
the CI potential. 

The experimental value of K falls within the error limits of 
the computed (T, P, N) values, while the calculated values of 
a are too high. This is not surprising since a is a strong function 
of T, and thus should be hard to fit accurately. 

D. Radial Distribution Functions. The calculated 0 - 0 , 
O-H, and H-H radial distribution functions are given in 
Figures 3-5, together with the experimental and LCY results. 
The experimental goo curve was obtained by x-ray diffrac­
tion;49 the experimental goH and gHH curves were obtained50 

by combining the x-ray data with neutron diffraction results 
on D2O and a model for the short-range order in the liquid. It 
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Figure 3. goo(R), oxygen-oxygen radial distribution function. Legend: 
1, experimental;49 2, calculated, chain I (N = 64); 3, calculated, chain II 
(N = 100); 4, calculated, (T, V, N) ensemble.8 
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Figure 4. gon(R), oxygen-hydrogen radial distribution function. Num­
bering of curves as in Figure 3. 

is likely that the experimental #OH and #HH curves are much 
less accurate than the goo curve.7'8 

The (T, P, N) MC results reproduce the important features 
of the atom-atom correlations found experimentally and by 
LCY in the (T, V, N) ensemble.51 The main difference is that 
the local (tetrahedral) order in the (T, P, N) functions tends 
to be sharper than in the other cases. This is related to the 
abnormally low average density and also the somewhat small 
value of N used. A comparison of the data for chains 1 and 11 
indicates that, as N increases, the radial distribution functions 
level out somewhat. 

The coordination number in water under these conditions 
(see eq 22) is ~5.2, both experimentally49 and in the LCY 
study. For chains I and II, the results are 4.01 ± 0.02 and 4.05 
± 0.03, respectively, reflecting the lowered density. Although 
these values are only slightly higher than in ice (4.0), the radial 
distribution functions show that the system is fluid rather than 
crystalline. Also, energy and volume fluctuations characteristic 
of liquid-solid phase transitions in MC calculations did not 
occur during the generation of the MC chains. 

E. Energy Distributions and Hydrogen Bonding. We now 
consider the question, "What is the nature of hydrogen bonding 
in liquid water?" While the general features are clear, there 
continues to be much debate about several important aspects 

R , A 

Figure 5. gHH(R), hydrogen-hydrogen radial distribution function. 
Numbering of curves as in Figure 3. 

- 4 . 0 -2.0 0.0 2.0 4 0 

Pair Energy, kcal/mol 

Figure 6. PUNN, probability distribution function of nearest-neighbor pair 
potential interactions. 

of the question. One of these is whether it makes sense to speak 
of discrete "made" and "broken" hydrogen bonds, or whether 
instead there is a broad range of interaction energies varying 
continuously from strong to very weak. Another unresolved 
problem is whether the range of energetic environments of 
individual molecules is made up of two (or more) fairly discrete 
populations of molecules, or whether the distribution is more 
or less simple and continuous. By studying the two PDF's, 
PUNN and PB, introduced in section II, we have answered these 
questions for the present model of liquid water. 

/3UNN is the distribution of pair potential interactions be­
tween molecules which are close enough together (i?NN < 3.6 
A) to be hydrogen bonded52 if their orientations are energet­
ically favorable. If the environment in the liquid segregates 
these pair interactions into "hydrogen-bonded" and "non-
hydrogen-bonded" groups, PtjNN s n o u ld have two peaks rep­
resenting the two classes. This behavior is not observed in our 
calculations, which are displayed in Figure 6. PUNN 'S a 

smooth, skewed, broad distribution with a single peak near 
-4.65 kcal/mol and a mean of -3.52 ± 0.07 kcal/mol for 
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Figure 7. PB, probability distribution function of binding energies B. The 
mean binding energy is twice the mean potential energy per molecule. 

chain II, and at -4.80 and -3.74 ± 0.03 kcal/mol, respec­
tively, for chain I. The shape of the distribution is fairly easy 
to understand. The probability density dies off at low energies 
because the volume of dimer configuration space with these 
energies is small, vanishing below the global pair energy 
minimum (~-5.8 kcal/mol). There are many high-energy 
configurations, but PUNN dies off in this region because of the 
unfavorable energetics. The peak in the middle is a compromise 
between these two factors. As an aside, we note that, since 
PUNN ~ 0 for energies £3 kcal/mol, the properties of the 
liquid are almost completely insensitive to the behavior of the 
pair potential at energies above this value.48 

Our analysis of PB was motivated by the following sugges­
tion by Ben-Nairn.15 For a simple liquid, PB is unimodal, re­
flecting a simple distribution of energetic environments. In a 
MC study of a two-dimensional waterlike liquid with molecules 
capable of participating in up to three "hydrogen bonds," 
Ben-Nairn found that the behavior of PB was more complex. 
For suitable potential parameters, he observed a series of four 
maxima, corresponding in energies to molecules with from zero 
to three hydrogen bonds. It is natural to identify the peaks with 
four quasi-components in a generalized mixture model of the 
liquid; perhaps che situation in water might be analogous.15 

However, the distribution of B computed in the present 
study (PB, Figure 7) is unimodal and featureless; there is no 
evidence for shoulders on the peak. This result is consistent with 
our finding regarding the simple distribution of nearest-
neighbor energies, since about 80% of the mean binding energy 
B is due to nearest-neighbor interactions. 

The ascription of these structural features of the model 
liquid to water itself must be tempered by a recognition of the 
approximations in the simulation. Specifically, the structure 
may be influenced by the low calculated density. 

VIII. Monte Carlo Calculation of Free Energies 
A. Introduction. The calculation of free energies is an im­

portant problem in liquid theory. However, the Metropolis MC 
technique is poorly suited for carrying out such computations; 
the free energy is essentially the logarithm of the partition 
function, and the Metropolis algorithm is successful largely 
because it avoids the necessity of calculating the configuration 
integral, which is the most complicated part of this partition 
function (see section IVB and eq 24 and 25). 

Nevertheless, it is possible53 to write an expression for the 
free energy as an ensemble average which, in principle, can be 

evaluated by the usual Metropolis procedure. From eq 10 and 
11, 

<exp(+j8t/jv)> 

= z S o S '*» S [exP("^K)] /(XA ')dX 'VdK (3°) 
The integral on the right is merely the configuration integral, 
ZIG, for the ideal gas (UN = 0). Thus, (cxp(+j3UN)) may be 
regarded as Z\QJZ. Hence, it is possible to express the excess 
free energy over the analytically calculable free energy of the 
ideal gas as 

ACxs = CH2O - GIG = -RT ln(Z/Z ]G) 
= RT\n (exp((3UN)) (31) 

Although eq 31 is formally correct, severe practical compu­
tational difficulties render this technique unreliable. This 
problem has been recognized previously.19'25 The rest of this 
section will be a discussion of these difficulties, illustrated by 
a test calculation that we have performed. 

B. Critique of the (exp(/3 LTJv)) Technique. The problems can 
be seen more clearly if the average is expressed in a form dif­
ferent from that in eq 11. If exp(/3[/v) is weighted by PUy, the 
probability of occurrence of the corresponding value of UN, 
then integration over all possible values of UN gives 

<exp(/3<yyv)> = §1 PuM exp(/3i»)di/ (32) 

The precise determination of AGxs, therefore, is equivalent 
to the precise determination of PUN around the values of UN 
for which the integrand in eq 32 is largest.25a In the following 
paragraphs, we will demonstrate that the range of UN in which 
PUN is computed precisely in a Metropolis MC calculation on 
liquid water does not include the range of UN which is impor­
tant in eq 32. This is a particular manifestation of a general 
difficulty which hinders the MC calculation of free energy 
differences between systems which do not resemble each other 
very closely.26 

In a MC experiment, PUN can be determined precisely only 
for values of UN which occur with sufficient frequency to be 
sampled adequately. Generally, PUN peaks sharply near the 
mean potential energy. Experimentally,54 (UN) ~-9.9N 
kcal/mol at T = 298 K, P = 1 atm. The standard deviation (~ 
the half-width) of the PUN distribution is ~ 1.6ViV kcal/mol 
under these conditions, based on the relationship between 
fluctuations in UN and the heat capacity.55 All of the sampling 
probably will be within a few standard deviations of the mean 
o(PuN (i-e., -9.9/V kcal/mol). 

Now let us see which values of UN must be sampled to 
evaluate the integral in eq 32 precisely. Since /3 = \/RT and 
the logarithm is the inverse of the exponential function, AGxs 
(see eq 31) is a direct measure of the values of UN which are 
important for the average of the exponential. Experimentally,55 

for water at T = 298 K and P = 1 atm, AGXs = -2.1/V kcal/ 
mol. In the (T, V, N) ensemble under the same conditions, the 
excess Helmholtz free energy AA\s = -5.7N kcal/mol.55 

These are much higher than -9.9N kcal/mol, where PUN is 
large, because the factor exp(/3£/yv) vastly increases the im­
portance of high-energy configurations. For example, KT = 
298 K and N = 100, exp[/3(-2.1A0]/exp[/3(-9.9A0] ~ 10570. 
This explains how high energies can dominate eq 31 and 32 in 
spite of the extremely low probability of observing the system 
in such states. We note in passing that this_problem does not 
occur in the calculation of averages such as UN, since UN varies 
slowly with respect to PUN SO that the integrand UNPUN is large 
where PUN itself is large (i.e., when (UN) is expressed by 
analogy toeq 32). 

The range of UN which must be sampled to calculate AGXs 
is —2.IiV - (-9.9A^) = l.SN kcal/mol. For N = 100, this 
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corresponds to almost 50 standard deviations of PUN and is an 
impossible computational task, using normal Metropolis 
sampling. In the (T, V, N) ensemble the range is smaller, but 
this does not improve the feasibility of the calculation. 

This same argument can be presented in a different way. In 
a MC chain with M steps (usually M ~ 106), events with 
probability «\/M will not occur, as a practical matter. Above 
some t//v,MAX> for which 

f" PVN(V)&V<\/M 

the MC calculation will set PUN = 0. Hence, the extreme wings 
of the PUN distribution will be undersampled. This has no effect 
on well-behaved averages such as UN, but it is disastrous for 
exp(/3£//v)̂  The calculated excess free energies will be sys­
tematically too negative, because of the underweighting of the 
otherwise dominant high energies. 

Figure 2 illustrates PUN and PUN exp(|3l/v) as obtained for 
chain II of our water computations. The sharp spike repre­
senting Pt/A:exp(/3C/jv) occurs at the largest values of UN ac­
tually sampled. As would be predicted by the analysis above, 
the value \G\s,/N = -8.56 kcal/mol, calculated from the MC 
results in Figure 2, is in poor agreement with experiment: 
99.9% of the integral in eq 32 comes from the top 0.05% of the 
energies sampled. The results for chain I are similar, and 
comparable discrepancies have been obtained in an entirely 
different liquid system, a model for electrolyte solutions.56 

Sarkisov et al.6 report good results, using this technique to 
calculate the free energy of water in the (T, V, N) ensemble 
with a pair potential which they have developed. In view of the 
poor results of our test and the supporting theoretical objec­
tions, their agreement with experiment is difficult to under­
stand. The spurious inclusion of a single high energy configu­
ration (UN/N ~ -5.7 kcal/mol) would be sufficient to produce 
their results, and we must in any case regard them as fortui­
tous. 

Accurate calculations of free energy in liquids are very 
difficult to obtain, and they are best carried out using spe­
cialized sampling techniques.25,26 

IX. Summary and Conclusions 

This paper has demonstrated the feasibility of performing 
Monte Carlo computations on models for liquid water in the 
(T, P, N) ensemble. It has been shown that calculations under 
these conditions make higher demands on the accuracy of the 
pair potential than do calculations in the (T, V, N) ensemble, 
since the structure of the fluid seems to be more sensitive to 
errors in the molar volume than to errors in the pressure caused 
by inaccuracies in the potential.57 

Two types of energy probability distribution functions were 
calculated as probes of the variety of intermolecular interac­
tions in the liquid. The pair interactions between nearest-
neighbor molecules are better described as a continuum of bent 
or stretched hydrogen bonds than as populations of "made" 
and "broken" hydrogen bonds. The distribution of binding 
energies indicated that the gradations between the various 
hydrogen-bonded environments of the molecules also are 
smooth. Stillinger and Rahman10 reached similar conclusions 
by a somewhat different route in their MD study of a water 
model. Although three-body effects, quantum effects, and 
coupling to intramolecular degrees of freedom have been ne­
glected (or crudely corrected for), we feel that the agreement 
of these two independent computer calculations (i.e., MC and 
MD using two different potential energy functions) is signif­
icant evidence for the qualitative relevance of these observa­
tions for the real liquid. 

Finally, we have demonstrated the inadequacy of a seem­
ingly attractive technique for overcoming the difficult problem 
of calculating free energies in liquids using the MC method. 

Acknowledgment. We would like to thank Dr. L. G. Dunfield 
for many long and fruitful discussions of Monte Carlo proce­
dures throughout the course of this work. 

Appendix. Quantum Effects on the Energy and Heat 
Capacity 

The existence of substantial quantum effects on the ther­
modynamics of water arises primarily from the small mass of 
the hydrogen atom and consequent high intra- and intermo­
lecular vibrational frequencies. There are two separate con­
tributions. 

First, when a molecule is transferred from the vapor phase 
to the liquid near room temperature, the sum of the three 
(unexcited) intramolecular vibrational frequencies decreases 
by ~435 cm-1.58 The result is to decrease the intramolecular 
zero-point energy; AZPEINTRA = ~0.6 kcal/mol. Since the 
CI potential was parametrized from ab initio calculations on 
rigid molecules, it cannot deal with this shift. Hence, 
AZPEINTRA should be added to the calculated energy for 
comparison with experiment.59 

Second, hindered molecular translations and rotations (Ii-
brations) form two bands of frequencies with IR absorbance 
maxima near 200 and 700 cm - ' , respectively.60 These values 
correspond to thermal excitation temperatures of ~300 and 
~1000 K, indicating that the vibrations are far from classical 
at room temperature. This effect is more difficult to treat. We 
will follow Eisenberg and Kauzmann61 in viewing the inter­
molecular vibrations as arising from a collection of quan­
tum-mechanical harmonic oscillators. 

The intermolecular vibrational spectral density can be ap­
proximated in various ways. Two reasonable ones are (1) two 
Debye spectra with cutoff frequencies of 200 and 700 cm-1, 
and (2) two Einstein spectra at average frequencies of 115 and 
450 cm -1 (as suggested by FaIk and Ford62). The vibrational 
thermodynamic properties predicted by the two models are in 
fairly good agreement. Averaging them, we obtain £VIB = 4.4 
kcal/mol (includes 2.7 kcal/mol ZPEINTER)

 a nd CPIVIB
 = 9.6 

cal/mol deg. 
The MC results must take account of these quantities before 

they can be related to the experimental internal energy and 
heat capacity. This can be done by subtracting the classical 
vibrational contributions included in the MC results and 
adding back the full quantum-mechanical vibrational contri­
butions.63 The classical vibrational potential energy for the 
six intermolecular vibrational modes is 3RT; CP,POT contains 
37? from the same source. Hence, the quantum-corrected 
equations for the internal energy and the heat capacity, as 
computed with MC, are 

E/N = UN/N - IRT + £VIB + AZPEINTRA 

= Uy/N + 2.0 kcal/mol (T = 298 K) 

Cp = Cp,POT — 3R + Cp,viB 

= Cp.poT +3.6 cal/mol deg (T = 298 K) 

We estimate that the errors in this analysis are ±0.3 kcal/mol 
for E/N and ±1 cal/mol deg for Cp, aside from the uncer­
tainties in the MC calculations. 

If, instead, the quantum effects were completely ignored and 
the classical kinetic energy terms were included, one would 
obtain at T = 298 K: 

E/N = UN/N + 1.8 kcal/mol 

,POT + 6.0 cal/mol deg 
The small size of the net quantum correction to E/N (2.0 - 1.8 
= +0.2 kcal/mol) stems from a considerable cancellation of 
intra- and intermolecular effects. The large AZPEINTRA 
makes the correction positive even though the intermolecular 
vibrations are not fully excited. 
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